{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Guardar y deployar un modelo predictivo\n", "\n", "Para este ejemplo utilizaremos un árbol de decisión" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "import os\n", "import pandas as pd\n", "from xgboost.sklearn import XGBClassifier\n", "from sklearn.model_selection import train_test_split\n", "from sklearn.metrics import accuracy_score, confusion_matrix, precision_score, recall_score, f1_score" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " | Pregnancies | \n", "Glucose | \n", "BloodPressure | \n", "SkinThickness | \n", "Insulin | \n", "BMI | \n", "DiabetesPedigreeFunction | \n", "Age | \n", "Outcome | \n", "
---|---|---|---|---|---|---|---|---|---|
0 | \n", "6 | \n", "148 | \n", "72 | \n", "35 | \n", "0 | \n", "33.6 | \n", "0.627 | \n", "50 | \n", "1 | \n", "
1 | \n", "1 | \n", "85 | \n", "66 | \n", "29 | \n", "0 | \n", "26.6 | \n", "0.351 | \n", "31 | \n", "0 | \n", "
2 | \n", "8 | \n", "183 | \n", "64 | \n", "0 | \n", "0 | \n", "23.3 | \n", "0.672 | \n", "32 | \n", "1 | \n", "
3 | \n", "1 | \n", "89 | \n", "66 | \n", "23 | \n", "94 | \n", "28.1 | \n", "0.167 | \n", "21 | \n", "0 | \n", "
4 | \n", "0 | \n", "137 | \n", "40 | \n", "35 | \n", "168 | \n", "43.1 | \n", "2.288 | \n", "33 | \n", "1 | \n", "